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Abstract

Exact integral expressions of the skew orthogonal polynomials involved in
orthogonal B = 1) and symplectic f = 4) random matrix ensembles
are obtained: the (even rank) skew orthogonal polynomials are average
characteristic polynomials of random matrices. From there, asymptotics of
the skew orthogonal polynomials are derived.

PACS number: 02.10.De

1. Introduction

Families of orthogonal (or skew orthogonal) polynomials, have many applications to
mathematics and physics [1, 2].

Here, we recall applications to random matrix theory (RMT) [3—7], i.e. disordered solid
state physics [4], QCD [7] or statistical physics on a random fluctuating lattice [5, 8] (2D
guantum gravity). In all these fields of physics, one is interested in the spectrum of a
matrix (Hamiltonian, transmission matrix, S-matrix, Dirac operator and so on), which can be
considered as random for various reasons (disorder, random impurities, quantum fluctuations,
chaos or non-integrability, etc). It was observed that the spectrum of a large random matrix
shows universal properties [9, 10] (two-point correlation function, in the short- or long-range
regime; universal conductance fluctuations of mesoscopic conductors). One possible way to
understand and prove that universality is through the ‘orthogonal polynomials’ method, which
we shall recall below. In order to extract some useful numerical results, it is important to have
some asymptotics of the orthogonal polynomials in some special limit.

The type of orthogonal polynomials involved depends on the symmetry of the matrix
ensemble [3]. The case of a physical system with broken time-reversibility (for instance a
mesoscopic conductor in the presence of a magnetic field), represented(by avariant
matrix ensemble, was extensively studied, because it is the simplest [2].
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Here, we shall focus on th@(N) andSp(2N) invariant matrix ensembles, which appear
for physical systems with time-reversibility afat half-integer spin with broken rotational
symmetry. These ensembles involve families of skew orthogonal polynomials.

The aim of this article is to present a remarkable exact expression of the skew orthogonal
polynomial as an integral, and deduce the required asymptotics from it.

Section 2 is a brief introduction to the orthogonal polynomial’s method in RMT, in
section 3 we give and prove the remarkable exact expressions for the skew orthogonal
polynomials, and in section 4, we consider their asymptotics.

2. The orthogonal polynomials
Consider the partition function of a random matiix

z@nq:/ dM e NptrV (M) (2.1)
MeEY

whereEl(Vl) is the set of allv x N real symmetric matricesE](Vz) is the set of allv x N
hermitian matricesEj(\f) is the set of all & x 2N self-adjoint real quaternionic matrices
(see appendix Al) andM is the product of Lebesgue measures of all independent real

components of the matri& € E](Vﬂ). V(x) is a polynomial (the potential), bounded from
below, andVg = N, N, N/2 respectively fop = 1, 2, 4.

The angular degrees of freedomMfcan be integrated out, and (2.1) can be rewritten as
an integral over the/ eigenvaluesi, ..., Ax) of M only [3, 11] :

N
zPv1=uvy f AP [T dn 2.2)
i=1

Whererﬁ,’g) is the volume of the group (N), U(N) or Sp(2N) respectively fo8 = 1, 2, 4.
dr = dre ¥V ® js the measure element, and
A =[] =) (2.3)
i<j

is the Vandermonde determinant, which can be rewritten as

1 a0 a2 At
1 a A2 ... ANt .

AG) =det]| 2 z =det(xl!)=detpj()\,») (2.4)
1 av A% 0Nt

whereP;(1) = A/ +--- is an arbitrary monic polynomial of degrge The last equality is
obtained by linearly mixing columns of the determinant, and the first equality is the well-
known Vandermonde determinant, which can be found in any math textbook [3].

The computation of integral (2.2) becomes easier with a special choice of the polynomials
P;(1), chosen orthogonal with respect to an appropriate scalar product [11]:

e Inthe unitary cas@ = 2, the scalar product under consideration is

(flg) =/ dxf (x)g(x) (2.5)

T me Ez(\;b can be viewed either as &2 2N matrix with complex number entries or ahx N block matrix with
quaternion entries (which arex22 matrices). It ha#/ eigenvalues, each degenerated twice [3].
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and the polynomial®, (x) are chosen orthogonal
(Py| Pm) = hubum. (2.6)
e In the orthogonal case = 1, the scalar product under consideration is skew-symmetric
o0 o0 _
o =-6in=[ [ @ fosme-ne @)
—0Q0 v —00

and the polynomial#®, (x) are chosen skew orthogonal

(P2n| Pom) = (Pop+1lPom+1) =0 (2.8)
(Pon+1| Pom) = hndpm- (29)
e In the symplectic casg = 4, the scalar product under consideration is skew-symmetric
too
© —
o)==l = [ & (g - Fwge (2.10)
—0Q
and the polynomial®, (x) are chosen skew orthogonal
(Pon|Pom) = (Pop+1| Pom+1) = 0 (2.11)
(Pon+1| Pom) = hndpm- (212)

In all three cases, the partition function (2.2) reduces maity = [1F, hn—1, where
ng is called the ‘Fermi level’ by analogy with a system of fermions
ng = gng for p=1,24 (2.13)
According to the Christoffel-Darboux theorem and its generalization to skew orthogonal
polynomials [17, 18], wheWV is large, the statistical observables (the correlation functions)
are related to properties of the polynomidg with » in the vicinity of the ‘Fermi level
n— oo, N — ooandn —ng ~ 0O(1).

2.1. Determination of the orthogonal polynomials

For a generic potentidl (x), these orthogonal polynomials exist, and can be constructed by
recurrence. Indeed, we start froPg(x) = 1, then the coefficients aP; are determined by
the orthogonality conditions, and by recurrence, we determjnendh,, for all n.

Note that for the skew orthogonal polynomials, there is an ambiguityis is defined
only up to an arbitrary linear combination wiffy,. If one wants a unique definition, an extra
condition should be added, for instance that the term of degrée 2,,+1 vanishes. Anyway,
the values oh,, do not depend on this ambiguity.

The determination of the orthogonal polynomials by recurrence is inefficient if one wants
to computeP, for n large. The aim of this article is to present a closed expressidt) &br
anyn, and to derive from it some asymptotics in the largamit, particularly near the Fermi
leveln —ng ~ O(1).

2 The actual result may depend on the parityVoDetails can be found in [3].
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3. An exact expression of the skew orthogonal polynomials

e Inthe unitary cas@ = 2, it is known that

PP (x) = dM def(xI — Mye VIV OD

Z(2)
(2)

(2) fd)\l SAh [ 10 = 2512 l_[(x—k) (3.14)

i<j

MeE

wherel is the dimension identity matrix. In other words, thﬁh orthogonal polynomial
is the average of the characteristic polynomial ef:a n hermitian matrix with respect to
the weight eVt V(M)

PP (x) = (detx] — M))uxn (3.15)
This has been known for more than a century [12] (in the context of RMT, see e.g.

[1, 2, 13]). We are now going to generalize this expressigh+e 1 and 4.
e Orthogonal casg = 1. We will prove below that

1
PV (x) = > , AM detxI — M) g NV
Z2n MeE;,
usY -
=& drz... daz, J]1ni — 4l ]_[(x—x)
2n i<j
= (detxI — M))2nx2n (3.16)
and
1
(1) _ - B ~NtrV (M)
Pyqa(x) = Z(l) /M £ dM (x + trM +c¢,) detxI — M) €
e
(1)/dxl g [ ] 1 =21 (x+ZA +cn> H(x—k)
i<j
= ((x + tr M +c,) detx] — M))2,x2n (3.17)

the constants, can be chosen arbitrarily, the choige= 0 being such that the term of
degreen in Py,+1 vanishesl is the dimensio2. identity matrix here.
e Symplectic casgéi =4

Py (x) = (4) dM det — M) 2V OD
Zy” JmeEl?
U<4>
(4)/dA1 O [ 1ni =2 |4]—[(x—)\)2
l<]
= (detxI — M))2nx2n (3.18)
and

pA _ 1 _ ~ Y trv(m)
Py (X)) = Z(4) /MEE(4) dM (x + trM +¢,) detlxI — M) e 2

U<4>
(4)/dA1 . dxy, ]_[M - <x+22)\ +c”) ]_[(x—)\)z
i<j
= ((x + trM + ¢,) detx] — M))2ux2n. (3.19)

Lis the dimensio2n identity matrix here (see appendix Al for a definitionéfe E,(l4)).
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3.1. Proof of (3.16)

Note that it is sufficient to prove that

(Pzn‘xm> -0 and (P2n+1 xm> —0  forall m<2n—1 (3.20)
Consider
<P2n x’”> X / dx ay drg... dio, 1_[()\.[ —Aj) 1_[()6 —Ai)
i<j i
< [ [sani — ;) sgnx —y) ¥ (3.21)

i<j
then writex = Ag,+1:
(Pz,,‘x’"> O(/Hy d...dioes " ] i—ap)

1<i<j<2n+1

2n
<[] sgni —aj) []sanCi — r2.+1) gt — ) (3.22)
1<i<j<2n+1 i=1

and symmetrize with respect to the firgt 2 1 variables:
2n+1

(Pa) o Y- [ @ B sy ] =i
k=1

1<i<j<2n+1

< [T soGi-ap [T sonti — i) sgGu —y).  (3.23)

1<i<j<an+l 1<k <2n+1
Note the following identity:
2n+1 2n+1 2n+1
[[sony—x)=> sany—a) [] sgrou—r) (3.24)
i=1 k=1 i=1li%k

which gives (and note = A2,+2)

(PZn

xm>o</akl...a)»2n+2 Mo [ =2 [T sonu-2p

1<i<j<2n+l 1<i<j<2n+2
(3.25)

The second bracket is completely antisymmetric in thet2 variables, so that we have
to antisymmetrize the first bracket as well. The result is zero wheq 2n, because any
non-zero antisymmetric polynomial of 2 2 variables must have degree at least 4, while
the first bracket is a polynomial of degree at mostr2any of its variables.

By the same argument, one would find that

2n+1
xm> a/a)\l...a)\w Y <cn+2)\,») [T @i-2p

i=1 1<i<j<2n+l

<P2n+l

x [T sonni—2p (3.26)

1<i<j<2n+2

which, by antisymmetrization of the first bracket, vanishes whed 2n — 1.
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3.2. Proof of (3.18)
Again, it is sufficient to prove that

<P2,1 ‘x’”> =0 and <P2n+l

xm> —0 forall m<2n-1 (3.27)

(PZn

x’”>o</ax Q... dn,

X l_[ i — Aj)4l_[(x —)? (mx’"_l —x" Z . —zki) . (3.28)
i=1

I<i<j<n i=1
Introducen extra variablesu, .. ., u,), and consider theri« 2n Vandermonde determinant
of the 2u variables(;, ;), divide it by [ ; (x; — w;) and take the limi; — 2;. You get

. Aoy (Xi, i
1—[ (A, —)»j)4= lim n2n( is i)
Hi—>hi Hizl()ti — i)

1<i<j<n
1 a A2 ... a2t
—det| 1 M A ... ot . (3.29)
0 1 24 ... (2n—1a32
0 1 2 ... 2n—1a22

By the same method, we have

- A, Ay i)
l_[ (i — )‘j)4l_[(x — )2 = lim ’1(71“1
1<i<jsn i=1 Hi=>Ai Hi:l()‘i )
1 x x2 .. x2n
2 2n
1 a0 A5 ... A
=det] 1 ,, a2 ... 2 (3.30)
0 1 2 ... ZnA%’_l
0 1 2)\n . 21’1)»5”_1
and
2 2n
1 a1 A A2
d 4 n ) 1 a Ag . Aﬁn
ox 1_[ (Ai —Aj) H(X —A)“=det] 0 1 2¢ ... opx2l |. (3.31)
I<i<j<n i=1 0 1 D . Zn)\'in_l

0 1 2, ... 221
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Therefore, the integrand in (3.28) is2u + 2) x (2n + 2) determinant

1 x x% .. x2 x™
1 xa A2 .0 0
2 2n
det (R VA S Al 0 (3.32)
0 1 2 ... 2nx2 1 pxm1
0 1 24 ... 20227Y 0
0 1 2, ... 22271 0

we notex = A,+1, and by antisymmetrization, it becomes

2 2n
1 a0 23 .. a2 A
i 2 )\2 )\Z.n )\'nlz
det ntl o Aper e n+l n+l (3.33)
0 1 2 ... 2wt gyt
0 1 2y ... 227t mardt

which obviously vanishes when < 2n.

By the same argument, one would find th#&p,+1|x™) reduces to the same kind of
integral, but withm replaced byn + 1, and vanishes when < 2n — 1.

We have thus proven that the skew orthogonal polynomials are indeed given by (3.16)
and (3.18).

4. Large N asymptotics

The largeN universal statistical properties of a randdhx N matrix M belonging to one of

the three ensemble‘fsj(f), can be expressed in terms of a few polynomiglswith n close to
the ‘Fermilevel’ [3, 17, 18]:

ng = gNﬁ. (4.34)

More precisely, fog = 2 we need asymptotics &%, in the limit

N — o0 n— oo n—N~ 0@ (4.35)
for B = 1 we need asymptotics &%, and P2,+1 in the limit

N — o0 n— oo 2n— N~ 0(1) (4.36)
and forg = 4 we need asymptotics @, and P2,+1 in the limit

N — o0 n— oo n—N=n—2Ns~ 0Q). (4.37)
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4.1. The resolvent

We introduce the functiofV (z) usually called the resolvent or Green function

W@ = W,V = i<Z ' >o< 1<trz - > (4.38)
k

def m 12—)% m M

whereM € E,(f) and the mean value is taken with respect to the weight

g mptr V(M) (4.39)
When there is no ambiguity, we will drop ths m or V indices, and write the resolvent as
W(z). Note that we have chosen a normalization such that

W) ~ 1 (4.40)

z—00 7

The reason to introduce the resolvent is that the logarithmic derivative, 6f) is
proportional to the resolvert,, (z) (from (3.14), (3.16) and (3.18), at least whers even)
for some appropriate value of, and with a potential of the form

V(z) = %V(Z) —r In(x —2). (4.42)
More precisely, we have:
e Inthe unitary cas@ = 2:
PP ()
PP

iem=n, r= % and7 = % (— 1whenn — ng).
e Inthe orthogonal casg = 1:

l !
P (x)
P3) (x)

ie.m=2n,r= % andT = an (— 1whenn — ng).
e In the symplectic casg = 4:

4 /
Pa, ()

A
Py (x)

n

=n Wp(2)|;=x with V(z) = %V(z) - % In(x —2) (4.42)

= 2n W2, (2)],— with V(x) = %V - % In(x — z) (4.43)

= 210 Wy (2)],es with V() = gv - Sm(x —2) (4.44)

i.e.m=n,r= % andT = § (= 1whenn — ng).
In all three case¥ = - andr = %
F

4.2. Asymptotics for the resolvent

In a potential, the resolven®W (z) = W, (z) satisfies the equations of motion (resulting from
invariance of an integral like equation 2.1 under a change of varfdble f(M)):
2
W@ - oW () = SV @W@ = 0) + 01/ (4.45)
wheren = (1, 0, —1) respectively for8 = (1, 2, 4) and Q(z) is a polynomial of degree deg
V — 2, which is not determined by the equations of motions and has to be determined by
analytical considerations, for instance the one-cut assumption.

3 WhenV’ has polesQ may have poles tooQ(z) is a rational function, whose poles must be chosen in order to
cancel the poles d#(z) in equation 4.45.
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Here, we will consider a potentis of the form

V(z) = %V(z) —rin(x —2) (4.46)

and we will be interested in the limit whe#e— 1 andr are small of order An.
The method is to find first the solutio (z) atT = 1 andr = 0. We write it

W(@) = Wo(2) + - Wa() + O(1/n?) (4.47)
and then, add the variations
0 0
(T — 1)3_TWO+FEWO (4.48)

(to order ¥n, we do not need to consider the variationshof with respect tol" andr), the
derivatives are taken & = 1 andr = 0.

4.3. Contribution of Wy

The functionWy(z), (as well as its derivatives with respect®@andr) has been extensively
studied in RMT. Note thaWy is nearly the same fg8 = 1, 2 or 4. Let us recall here some of
the main features diy in order to fix the notations.

At n — oo (T = 1 andr = 0), 4.45 reduces to a quadratic equation Way(z). The
one-cut solution is

1
Wo(z) = 5 (V'(z) = M(2)y/(z — a)(z — b)) (4.49)

whereM (z) is a polynomial of degreé — 1 (d = degV’), which is completely determined
by the large; limit condition 4.40

M) = Pol V'@ (4.50)

= z/(T—a/2)X—b/7)
The end-pointg andb too are determined by (4.40) which implies
!/ /
V'(z) . -0 2V'(2) q
V(z—a)(z—b) V(z—a)(z—b)
where the contour encircles the cut p] in the counterclockwise direction.

We also introduce the functign(z) = ﬁiﬂM(z)\/ (z — a)(b — z), defined for; complex.
Itis such that

; =2irf  (4.51)

Wo(z) = %V’(Z) —inp(2). (4.52)

Whenz € [a, b], p(z) is real and coincides with the average density of eigenvalues of the
random matrix in the larg® limit*. Indeed from (4.38)W (z) = fab Z_%p()u) dx. Note that
(4.40) implies that the density is normalized:

b
/ dz p(z) = 1. (4.53)
It is useful to notice thaWyp(z) obeys a linear Riemann—Hilbert type equation:
. . 2
Wo(z +1i0) + Wo(z — i0) = EV/(Z) when z € [a, b]. (4.54)

4 As an example, consider the Gaussian casés quadratic, i.eV’ is of degreel = 1, thusM(z) is a constant and
p(z) = /(z —a)(b — z) is the famous Wigner’s semi-circle law.
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Some notations. 1t will be convenient to parametrizeas
+b b a+b b—

a > e cos</>(z) T + 200 COS¢(z) where o = Ta (4.55)
¢(z) is deflned for all complex and is a multi-valued function. We will see that both
determinationsp(z) and —¢(z) will enter the asymptotic expression of the orthogonal
polynomials whery € [a, b].

We also define (z) as

=

0(z) =(z—a)z—b). (4.56)

We have
1
Vo (z) = 2ia sing and ' (z) = . (4.57)
Vo (z)
4.4. Variations of Wy with respect to T and r
It can be proven from (4.54) and (4.40) (see [13] for instance) that
d 1 Ao (2)
= — =  —j-= 4.
Wr(2) = dr T Wo(z) 750 =4 (4.58)

and
1 Jo(z) — o) 1

d
W (2) = ,BEWO(Z) Vo] - + 70 (4.59)

In particular atz = x, we have
!/
o’(x) N 1

W, (x) = o o (4.60)
4.5. Contribution of W;
ForT =1 andr =0, and to ordeO (1/n), the equation of motion reduces to

W2(z) — %W’(z) +0(1/n? = EV’@W@ - 0() (4.61)
and we expandl (z) to first order in ¥n as

W(@) ~ Wo(2) + - Wi() + O(1/n?). (4.62)
To order ¥ n, equation (4.61) gives (using the valueWsf(z) from (4.49)):

2 01(z) — Wy(2)

“Wi(z) = ——~ 97 4.63

5 1(2) e (4.63)

whereQ1(z) is a polynomial of degreé — 2.
Let us factorizeM (z) (recall thatd = degV’ andg is the leading coefficient of’):

d—1

M@ =g[]c—z (4.64)
k=1

and decompos®/ into single pole terms.The condition th& (z) is regular whery = z
determines the polynomi&1(z), we obtain

o (z) Z \/a(z Vo (zx) d

"% — .
1e) = P (z —zk)V/0o (2) 20 (2)

(4.65)
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With the parameterization= % + 20 coSp andzy; = # + 20 cos¢y, we have

d[1 CL o e@ k) d,
Wi(z) = @ [4_1 Ino(z) +kX:‘;In sin <T> — §I¢(Z) . (4.66)

4.6. Asymptotics of the skew orthogonal polynomials

We have computed all the contributions to the asymptotics of the resolvent

1 T-1
W) ~ ZWo(@) + ——=Wr () + %Wr (z)%wz) +o(/nd  (4.67)
i.e.
2nW(z) ~ BNgWo(2) + (2n — BNp)Wr (2) + W, (2) + nWa(z) + O(1/n) (4.68)

whereWy, Wr, W,, W1 are given by (4.52), (4.58), (4.59) (or (4.60)), (4.65) (or (4.66)).
Combining everything together:

e f =2. FromP,/P, = nW(x), we get the asymptotic behaviour of the orthogonal
polynomials (already known [2,13,14]):

P,fz)(x)e‘%v(x) ~ e NIT [ P dydn=N+2)é 4 oo (4.69)

The normalization constam}lz) — o"*7 is such thatP, (x) ~ x" for largex. Equation
(4.69) is basically the contribution &, which is the same for all three cages- 1, 2, 4.
TheB = 1 andB = 4 cases contain an extra contribution fra¥.

e 8 =1. FromP; /Py, = 2nW(x) we get.

c® o . .
PO ye NV « __Sn o Nin [ p()dy @+1-N=9)¢ 1 (4) + c.c. 4.70
20 () V2o sing +(9) (4.70)
where
d—1
+

Mi(¢) = M_(=¢) = [ ] 2i sin ("’ 2"”‘). (4.71)

k=1

Note thatM (x) = ga? 1M+ (p)M_(¢), whereg is the leading coefficient of’ (x).
d-1
ch = o213 l—[ e it/2 (4.72)
k=1

is the normalization constant chosen so thgt(x) ~ x2* for largex.

The odd polynomial is found fronPs,+1/ P2, = (x + trM + ¢,) and (trM) =
2nlim._ o0 z2(W(z) — 1) (note that we need (4.59), not (4.60)). The whotkependence
of Pa,+1/ P2, comes fromx + lim._ o0 22(W,(z) — 1) = Vo (x) — #. Therefore, (and
up to an arbitrary linear combination witPp,), we have

PD (e NV ~ cD | f2ia sing e N1 fa PO dy d@+1-N=9¢ 11, (4) + c.c.
(4.73)
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e 8 =4. FromP, /P>, = 2nW(x) we get

(4
(4) _ Ny Cn —2Nin [¥ p(y) dy d(@n+1-2N+)¢ M- (¢)
P e 2 ~— ¢ a € 2 +cc (4.74
2 (%) V2ia sing ip(x) @

with normalization constant

d-1
@ _ 8  ontd+d idi/2
ct —47_[01" 2 [[e* (4.75)
k=1
and
PO (1)e VW <« c® /2y sing sing e 2Nim [ p() dy d(@n+1-2N+4)¢ M_($) | ce
2n+1 n —i,o(x) .C.
(4.76)

Note that we have usedix) = £a Mi(¢) M_(¢) 2ising.

Some remarks

e The derivation presented here is actually valid only whe# [a, b], giving only one
exponential term, with the determination pfx) and ¢ (x) (from (4.55)) such that
P,(x)e" NV decreases whemn — oo. Whenx € [a, b], a careful analysis shows
that both determinations gf(x) must be taken into account. The only effectis to add the
complex conjugate exponential (c.c.) to the asymptotics, saha is indeed real when
x € [a, b]. Outside |, b], P,e V" decreases exponentially, and in p], it oscillates
like a cosine function, and it indeed hageroes.

e The derivation was carried out only in the ‘one-cut’ case. It was assumed that the support
of the density of eigenvalues (f&v — o0) is connected and is made of one interval
[a, b].

e The derived asymptotics are not valid wheis close to the end-pointsor . One must
have|(x —a)(x — b)| > O(N~Y), wherey is some positive (and rational) exponent
which depends on the potentiéil For generié V, (in particular forV quadratic), we
havey = 2/3[20, 21].

o Note that the above expressions all have the correct labghaviourP, (x) ~ x". It can
be seen easily if one remembers that «€? when ip — +oc.

4.7. Check of orthogonality

We have presented a derivation of the asymptotics (4.70)—(4.76), so that there should be no
reason to doubt they fulfil the orthogonality condition. However, it is interesting to see how.
We will just sketch the procedure.

In all cases, we have to compute integral®pP,,e~ V', with x running from—oo to +oo.
The contributions outside:[b] are exponentially small, the integrals can thus be computed
inside |z, b]. Within [a, b], terms which oscillate exponentially fast liké&'& e, average to
zero to ordeiO (1/N), so that to leading order, it is sufficient to consider only the cross-terms
in the productP, P,,, with opposite signs for the two determinationspof

In the 8 = 1 case, the scalar produ@®, | P,,) of (2.7) can be computed by integration
by parts. For that, you need a primitive 8fe~V", which is achieved to leading order by
dividing (4.70) or (4.73) by (x) o< M+(¢p)M_(¢) Sing.

5y depends om, andm;, wherep(z) ~ (z — a)"™a*Y/2 nearz = a andp(z) ~ (z — b)"»*Y2 nearz = b. When
mg = myp =0, we havey = 2/3.
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Inthe 8 = 4 case, you need a derivativeafe‘%v, which is achieved to leading order
by multiplying (4.74) or (4.76) by (x) o< M+(¢p)M_(¢) Sing.

Then you find that in both caseg & 1 and 4), and up to unimportant constant factors,
you have to leading order (up ©(1/n))

m sin2(n —m)¢
(P2n| Pom) o</0 do g - 0 (4.77)
(Pop+1| Pom+1) o /ﬂ d¢ sing sin2n —m)¢p =0 (4.78)
0
(Pon+1| Pom) /n d¢ Cos Kn —m)$ X Sum (479)
0

which confirms that our asymptotics indeed fulfil the orthogonality properties.
Taking into account properly the constant factors, we can determirig’the

e 3 =2:

h? ~ 27 o2t (4.80)
e =1

hD ~ % a¥*3 (4.81)
o =4

P ~ 2N7 ga®t o1, (4.82)

5. Conclusions

Therefore, we have obtained some exact integral expressions and asymptotics for the skew
orthogonal polynomials involved in the orthogonal and symplectic random matrix ensembles.

Our asymptotics were derived in the ‘one-cut’ case only, though it seems likely that the
result could be extended easily to the multicut case, following the method of [15] or [16] and
would involve hyper-elliptical theta functions instead of exponentials.

Another possible extension of the method presented here is to ‘multi-matrix models’, and
a time-dependent matrix, as in [13]. It seems that the same kind of asymptotics could be
obtained.

The asymptotics of the skew orthogonal polynomials are useful to evaluate the Christoffel—
Darboux kernels

N-1

1 1
KGo )=+ ) = (Pon() Pansa (1) = Pansa () Pan (1)) €/ &NV (5.83)
n=0 "
which give all the correlation functions. For instance witk- 4, we have [3]
ad
p(A) = —ﬁK(k, ) (5.84)
H=A
(A )——aK(A ) 8K(x Y+ KO\, @) g 8K(x ) (5.85)
IOC 7“’ - 8)\. 7“’ aM 7“’ 7“’ 3)»3# 7“" .

In order to use the asymptotics of the orthogonal polynomials in (5.83), one needs a
generalization of the Christoffel-Darboux theorem, which yigtda, 1) in terms of a few
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P, only with n close to the Fermi levetr. With asymptotics of the type (4.69), (4.70),
(4.73), (4.74) or (4.76), the Christoffel-Darboux theorem [17, 18] merely amounts to a formal
resummation of the geometrical series (it was proven in [13] for hermitian multi-matrix models,
and the same proof would work here). For instance inghe 4 case, the generalization of
the Christoffel-Darboux theorem reads

N-1
Z g @n*3-2N) (M) =4 ()

n=0

1

- . 5.86
2i sin(¢(2) — ¢ () (5:86)

This trick yields asymptotics for the kernels(i, 1), and subsequently asymptotics for

all the correlation functions. One can then easily check that in the short distance regime
A — | ~ O(1/N), the universal 2-point connected correlation function is well reproduced,
and that in the long distance reginie — | ~ O(1), the smoothed 2-point connected
correlation function is correctly reproduced too. The leading behaviour of short- and long-
distance correlation functions was already known from other methods [3], so that our method
does not provide any new result for the correlation functions. However, it seems that our
asymptotics could be used to build a rigorous mathematical proof of the universality, following
the method of [10], because they allow a good control of the approximations.

In addition, the fact that the skew orthogonal polynomials are exactly the average
characteristic polynomials of the random matrices is remarkable. It would be interesting
to understand the generality of this result, and for instance try to generalize it to the other
random matrix ensembles related to Cartan’s classification of symmetric spaces [19].

Appendix Al. The symplectic ensemble 3 = 4

El(\f) is the set of all real-quaternion-self-dual matrigésof size 2V x 2N .
One can view a® x 2N matrix M as a block matrix withV2 blocks of size 2x 2

W= Moi—12j-1 M2i2j-1
Y Moi_12j  M2i2j

By definition, M € El(\f) means that each?ij is a real-quaternion (see appendix A2). The
matrix (M);; (1 < i, j < N)is aN x N matrix with real-quaternion entries, and self duality
means that/,;; = M ;;, which implies that/ is hermitian: Mt = M.

Note thatZMZ = —M' whereZ = ( % §) ®Idy.

M is diagonalizable (by a symplectic transformation) and all its eigenvalues are

degenerated twice. Ldti,...,Ay) be the eigenvalues. The trace and the determinant
of M are
N B N 2
trM =2 %; detM = (PfM)?> = [ []»; | - (A1.87)
j=1 j=1

The measured on El(\f) is

N

— 70 ~(0) ~ (1) (2 (3

am d_efl_[dM” [1 dur; dsg;y dags dad ;. (A1.88)
i=1 1<i<j<N
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Appendix A2. Quaternions

A real-quaterniorg can be represented as &2 matrix of the following form:
q=q%L+qPe1+qPer+¢Ves (A2.89)
whereg©@, ¢ | 4@ 4@ are real numbers and

h==<é 2) “F=<fl é) @==<? 6) @==<é _g). (A2.90)

The conjugate of a quaternignis

7=qO% — ¢We1 — ¢@ey— g@es. (A2.91)

The set of quaternions is a non-commutative field (note that any non-zero quaternion is
invertible).
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