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Abstract
Exact integral expressions of the skew orthogonal polynomials involved in
orthogonal (β = 1) and symplectic (β = 4) random matrix ensembles
are obtained: the (even rank) skew orthogonal polynomials are average
characteristic polynomials of random matrices. From there, asymptotics of
the skew orthogonal polynomials are derived.

PACS number: 02.10.De

1. Introduction

Families of orthogonal (or skew orthogonal) polynomials, have many applications to
mathematics and physics [1, 2].

Here, we recall applications to random matrix theory (RMT) [3–7], i.e. disordered solid
state physics [4], QCD [7] or statistical physics on a random fluctuating lattice [5, 8] (2D
quantum gravity). In all these fields of physics, one is interested in the spectrum of a
matrix (Hamiltonian, transmission matrix, S-matrix, Dirac operator and so on), which can be
considered as random for various reasons (disorder, random impurities, quantum fluctuations,
chaos or non-integrability, etc). It was observed that the spectrum of a large random matrix
shows universal properties [9, 10] (two-point correlation function, in the short- or long-range
regime; universal conductance fluctuations of mesoscopic conductors). One possible way to
understand and prove that universality is through the ‘orthogonal polynomials’ method, which
we shall recall below. In order to extract some useful numerical results, it is important to have
some asymptotics of the orthogonal polynomials in some special limit.

The type of orthogonal polynomials involved depends on the symmetry of the matrix
ensemble [3]. The case of a physical system with broken time-reversibility (for instance a
mesoscopic conductor in the presence of a magnetic field), represented by aU(N) invariant
matrix ensemble, was extensively studied, because it is the simplest [2].
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Here, we shall focus on theO(N) andSp(2N) invariant matrix ensembles, which appear
for physical systems with time-reversibility and/or half-integer spin with broken rotational
symmetry. These ensembles involve families of skew orthogonal polynomials.

The aim of this article is to present a remarkable exact expression of the skew orthogonal
polynomial as an integral, and deduce the required asymptotics from it.

Section 2 is a brief introduction to the orthogonal polynomial’s method in RMT, in
section 3 we give and prove the remarkable exact expressions for the skew orthogonal
polynomials, and in section 4, we consider their asymptotics.

2. The orthogonal polynomials

Consider the partition function of a random matrixM:

Z
(β)
N [V ] =

∫
M∈E(β)N

dM e−Nβ trV (M) (2.1)

whereE(1)N is the set of allN × N real symmetric matrices,E(2)N is the set of allN × N

hermitian matrices,E(4)N is the set of all 2N × 2N self-adjoint real quaternionic matrices1

(see appendix A1) and dM is the product of Lebesgue measures of all independent real
components of the matrixM ∈ E

(β)
N . V (x) is a polynomial (the potential), bounded from

below, andNβ = N,N,N/2 respectively forβ = 1,2,4.
The angular degrees of freedom ofM can be integrated out, and (2.1) can be rewritten as

an integral over theN eigenvalues(λ1, . . . , λN) of M only [3, 11] :

Z
(β)
N [V ] = U

(β)
N

∫
|�(λ)|β

N∏
i=1

dλi (2.2)

whereU(β)N is the volume of the groupO(N), U(N) or Sp(2N) respectively forβ = 1,2,4.
dλ = dλe−NV (λ) is the measure element, and

�(λ) =
∏
i<j

(λi − λj ) (2.3)

is the Vandermonde determinant, which can be rewritten as

�(λ) = det




1 λ1 λ2
1 . . . λN−1

1

1 λ2 λ2
2 . . . λN−1

2
...

...

1 λN λ2
N . . . λN−1

N


 = det

(
λ
j
i

)
= detPj (λi) (2.4)

wherePj (λ) = λj + · · · is an arbitrary monic polynomial of degreej. The last equality is
obtained by linearly mixing columns of the determinant, and the first equality is the well-
known Vandermonde determinant, which can be found in any math textbook [3].

The computation of integral (2.2) becomes easier with a special choice of the polynomials
Pj (λ), chosen orthogonal with respect to an appropriate scalar product [11]:

• In the unitary caseβ = 2, the scalar product under consideration is

〈f |g〉 =
∫ ∞

−∞
dxf (x)g(x) (2.5)

1 M ∈ E(4)
N

can be viewed either as a 2N × 2N matrix with complex number entries or anN × N block matrix with
quaternion entries (which are 2× 2 matrices). It hasN eigenvalues, each degenerated twice [3].
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and the polynomialsPn(x) are chosen orthogonal

〈Pn|Pm〉 = hnδnm. (2.6)

• In the orthogonal caseβ = 1, the scalar product under consideration is skew-symmetric

〈f |g〉 = −〈g|f 〉 =
∫ ∞

−∞

∫ ∞

−∞
dx dy f (x) sgn(x − y) g(y) (2.7)

and the polynomialsPn(x) are chosen skew orthogonal

〈P2n|P2m〉 = 〈P2n+1|P2m+1〉 = 0 (2.8)

〈P2n+1|P2m〉 = hnδnm. (2.9)

• In the symplectic caseβ = 4, the scalar product under consideration is skew-symmetric
too

〈f |g〉 = −〈g|f 〉 =
∫ ∞

−∞
dx (f (x)g′(x)− f ′(x)g(x)) (2.10)

and the polynomialsPn(x) are chosen skew orthogonal

〈P2n|P2m〉 = 〈P2n+1|P2m+1〉 = 0 (2.11)

〈P2n+1|P2m〉 = hnδnm. (2.12)

In all three cases, the partition function (2.2) reduces mainly2 toZ = ∏nF
n=1 hn−1, where

nF is called the ‘Fermi level’ by analogy with a system of fermions

nF = β

2
Nβ for β = 1,2,4. (2.13)

According to the Christoffel–Darboux theorem and its generalization to skew orthogonal
polynomials [17, 18], whenN is large, the statistical observables (the correlation functions)
are related to properties of the polynomialsPn, with n in the vicinity of the ‘Fermi level’:
n → ∞,N → ∞ andn− nF ∼ O(1).

2.1. Determination of the orthogonal polynomials

For a generic potentialV (x), these orthogonal polynomials exist, and can be constructed by
recurrence. Indeed, we start fromP0(x) = 1, then the coefficients ofP1 are determined by
the orthogonality conditions, and by recurrence, we determinePn andhn for all n.

Note that for the skew orthogonal polynomials, there is an ambiguity:P2n+1 is defined
only up to an arbitrary linear combination withP2n. If one wants a unique definition, an extra
condition should be added, for instance that the term of degree 2n in P2n+1 vanishes. Anyway,
the values ofhn do not depend on this ambiguity.

The determination of the orthogonal polynomials by recurrence is inefficient if one wants
to computePn for n large. The aim of this article is to present a closed expression ofPn for
anyn, and to derive from it some asymptotics in the largen limit, particularly near the Fermi
leveln− nF ∼ O(1).

2 The actual result may depend on the parity ofN. Details can be found in [3].
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3. An exact expression of the skew orthogonal polynomials

• In the unitary caseβ = 2, it is known that

P (2)n (x) = 1

Z
(2)
n

∫
M∈E(2)n

dM det(xI −M)e−N trV (M)

= U
(2)
n

Z
(2)
n

∫
dλ1 . . .dλn

∏
i<j

|λi − λj |2
∏
i

(x − λi) (3.14)

whereI is the dimensionn identity matrix. In other words, thenth orthogonal polynomial
is the average of the characteristic polynomial of an × n hermitian matrix with respect to
the weight e−N trV (M):

P (2)n (x) = 〈det(xI −M)〉n×n (3.15)

This has been known for more than a century [12] (in the context of RMT, see e.g.
[1, 2, 13]). We are now going to generalize this expression toβ = 1 and 4.

• Orthogonal caseβ = 1. We will prove below that

P
(1)
2n (x) = 1

Z
(1)
2n

∫
M∈E(1)2n

dM det(xI −M) e−N trV (M)

= U
(1)
2n

Z
(1)
2n

∫
dλ1 . . . dλ2n

∏
i<j

|λi − λj |
∏
i

(x − λi)

= 〈det(xI −M)〉2n×2n (3.16)

and

P
(1)
2n+1(x) = 1

Z
(1)
2n

∫
M∈E(1)2n

dM (x + trM + cn) det(xI −M) e−N trV (M)

= U
(1)
2n

Z
(1)
2n

∫
dλ1 . . . dλ2n

∏
i<j

|λi − λj |
(
x +

∑
i

λi + cn

) ∏
i

(x − λi)

= 〈(x + trM + cn) det(xI −M)〉2n×2n (3.17)

the constantscn can be chosen arbitrarily, the choicecn = 0 being such that the term of
degree2n in P2n+1 vanishes.I is the dimension2n identity matrix here.

• Symplectic caseβ = 4

P
(4)
2n (x) = 1

Z
(4)
n

∫
M∈E(4)n

dM det(xI −M) e−N
2 trV (M)

= U
(4)
n

Z
(4)
n

∫
dλ1 . . . dλn

∏
i<j

|λi − λj |4
∏
i

(x − λi)
2

= 〈det(xI −M)〉2n×2n (3.18)

and

P
(4)
2n+1(x) = 1

Z
(4)
n

∫
M∈E(4)n

dM (x + trM + cn) det(xI −M) e−N
2 trV (M)

= U
(4)
n

Z
(4)
n

∫
dλ1 . . . dλn

∏
i<j

|λi − λj |4
(
x + 2

∑
i

λi + cn

) ∏
i

(x − λi)
2

= 〈(x + trM + cn) det(xI −M)〉2n×2n. (3.19)

I is the dimension2n identity matrix here (see appendix A1 for a definition ofM ∈ E(4)n ).
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3.1. Proof of (3.16)

Note that it is sufficient to prove that〈
P2n

∣∣∣xm〉 = 0 and
〈
P2n+1

∣∣∣xm〉 = 0 for all m � 2n− 1. (3.20)

Consider〈
P2n

∣∣∣xm〉 ∝
∫

dx dy dλ1 . . . dλ2n

∏
i<j

(λi − λj )
∏
i

(x − λi)

×
∏
i<j

sgn(λi − λj ) sgn(x − y) ym (3.21)

then writex = λ2n+1:〈
P2n

∣∣∣xm〉 ∝
∫

dy dλ1 . . . dλ2n+1 ym
∏

1�i<j�2n+1

(λi − λj )

×
∏

1�i<j�2n+1

sgn(λi − λj )

2n∏
i=1

sgn(λi − λ2n+1) sgn(λ2n+1 − y) (3.22)

and symmetrize with respect to the first 2n + 1 variables:

〈
P2n

∣∣∣xm〉 ∝
2n+1∑
k=1

∫
dy dλ1 . . . dλ2n+1 ym

∏
1�i<j�2n+1

(λi − λj )

×
∏

1�i<j�2n+1

sgn(λi − λj )
∏

1�i� =k�2n+1

sgn(λi − λk) sgn(λk − y). (3.23)

Note the following identity:

2n+1∏
i=1

sgn(y − λi) =
2n+1∑
k=1

sgn(y − λk)

2n+1∏
i=1,i� =k

sgn(λk − λi) (3.24)

which gives (and notey = λ2n+2)

〈
P2n

∣∣∣xm〉 ∝
∫

dλ1 . . . dλ2n+2


λm2n+2

∏
1�i<j�2n+1

(λi − λj )




 ∏

1�i<j�2n+2

sgn(λi − λj )


 .

(3.25)

The second bracket is completely antisymmetric in the 2n + 2 variables, so that we have
to antisymmetrize the first bracket as well. The result is zero whenm � 2n, because any
non-zero antisymmetric polynomial of 2n + 2 variables must have degree at least 2n + 1, while
the first bracket is a polynomial of degree at most 2n in any of its variables.

By the same argument, one would find that

〈
P2n+1

∣∣∣xm〉 ∝
∫

dλ1 . . . dλ2n+2


λm2n+2

(
cn +

2n+1∑
i=1

λi

) ∏
1�i<j�2n+1

(λi − λj )




×

 ∏

1�i<j�2n+2

sgn(λi − λj )


 (3.26)

which, by antisymmetrization of the first bracket, vanishes whenm � 2n− 1.
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3.2. Proof of (3.18)

Again, it is sufficient to prove that〈
P2n

∣∣∣xm〉 = 0 and
〈
P2n+1

∣∣∣xm〉 = 0 for all m � 2n− 1 (3.27)

〈
P2n

∣∣∣xm〉 ∝
∫

dx dλ1 . . . dλn

×
∏

1�i<j�n
(λi − λj )

4
n∏
i=1

(x − λi)
2

(
mxm−1 − xm

n∑
i=1

2

x − λi

)
. (3.28)

Introducen extra variables(µ1, . . . , µn), and consider the 2n× 2n Vandermonde determinant
of the 2n variables(λi , µi), divide it by

∏
i (λi − µi) and take the limitµi → λi . You get∏

1�i<j�n
(λi − λj )

4 = lim
µi→λi

�2n(λi , µi)∏n
i=1(λi − µi)

= det




1 λ1 λ2
1 . . . λ2n−1

1
...

...

1 λn λ2
n . . . λ2n−1

n

0 1 2λ1 . . . (2n− 1)λ2n−2
1

...
...

0 1 2λn . . . (2n− 1)λ2n−2
n



. (3.29)

By the same method, we have

∏
1�i<j�n

(λi − λj )
4
n∏
i=1

(x − λi)
2 = lim

µi→λi

�(x, λi, µi)∏n
i=1(λi − µi)

= det




1 x x2 . . . x2n

1 λ1 λ2
1 . . . λ2n

1
...

...

1 λn λ2
n . . . λ2n

n

0 1 2λ1 . . . 2nλ2n−1
1

...
...

0 1 2λn . . . 2nλ2n−1
n




(3.30)

and

∂

∂x

∏
1�i<j�n

(λi − λj )
4
n∏
i=1

(x − λi)
2 = det




1 λ1 λ2
1 . . . λ2n

1
...

...

1 λn λ2
n . . . λ2n

n

0 1 2x . . . 2nx2n−1

0 1 2λ1 . . . 2nλ2n−1
1

...
...

0 1 2λn . . . 2nλ2n−1
n



. (3.31)
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Therefore, the integrand in (3.28) is a(2n + 2)× (2n + 2) determinant

det




1 x x2 . . . x2n xm

1 λ1 λ2
1 . . . λ2n

1 0
...

...
...

1 λn λ2
n . . . λ2n

n 0
0 1 2x . . . 2nx2n−1 mxm−1

0 1 2λ1 . . . 2nλ2n−1
1 0

...
...

...

0 1 2λn . . . 2nλ2n−1
n 0




(3.32)

we notex = λn+1, and by antisymmetrization, it becomes

det




1 λ1 λ2
1 . . . λ2n

1 λm1
...

...
...

1 λn+1 λ2
n+1 . . . λ2n

n+1 λmn+1

0 1 2λ1 . . . 2nλ2n−1
1 mλm−1

1
...

...
...

0 1 2λn+1 . . . 2nλ2n−1
n+1 mλm−1

n+1




(3.33)

which obviously vanishes whenm � 2n.
By the same argument, one would find that〈P2n+1|xm〉 reduces to the same kind of

integral, but withm replaced bym + 1, and vanishes whenm � 2n− 1.
We have thus proven that the skew orthogonal polynomials are indeed given by (3.16)

and (3.18).

4. Large N asymptotics

The largeN universal statistical properties of a randomN × N matrix M belonging to one of
the three ensemblesE(β)N , can be expressed in terms of a few polynomialsPn, with n close to
the ‘Fermi level’ [3, 17, 18]:

nF = β

2
Nβ. (4.34)

More precisely, forβ = 2 we need asymptotics ofPn in the limit

N → ∞ n → ∞ n−N ∼ O(1) (4.35)

for β = 1 we need asymptotics ofP2n andP2n+1 in the limit

N → ∞ n → ∞ 2n−N ∼ O(1) (4.36)

and forβ = 4 we need asymptotics ofP2n andP2n+1 in the limit

N → ∞ n → ∞ n−N = n− 2N4 ∼ O(1). (4.37)



7598 B Eynard

4.1. The resolvent

We introduce the functionW(z) usually called the resolvent or Green function

W(z) =
def
W(β)
m [V ](z) =

def

1

m

〈
m∑
k=1

1

z− λk

〉
∝ 1

m

〈
tr

1

z−M

〉
(4.38)

whereM ∈ E(β)m and the mean value is taken with respect to the weight

e−mβ trV(M). (4.39)

When there is no ambiguity, we will drop theβ, m or V indices, and write the resolvent as
W(z). Note that we have chosen a normalization such that

W(z) ∼
z→∞

1

z
. (4.40)

The reason to introduce the resolvent is that the logarithmic derivative ofPn(x) is
proportional to the resolventWm(z) (from (3.14), (3.16) and (3.18), at least whenn is even)
for some appropriate value ofm, and with a potential of the form

V(z) = 1

T
V (z)− r ln(x − z). (4.41)

More precisely, we have:

• In the unitary caseβ = 2:

P
(2)′
n (x)

P
(2)
n (x)

= nWn(z)|z=x with V(z) = N

n
V (z)− 1

n
ln (x − z) (4.42)

i.e.m = n, r = 1
n

andT = n
N
(→ 1 whenn → nF).

• In the orthogonal caseβ = 1:

P
(1)
2n

′
(x)

P
(1)
2n (x)

= 2nW2n(z)|z=x with V(x) = N

m
V − 1

m
ln(x − z) (4.43)

i.e. m = 2n, r = 1
2n andT = 2n

N
(→ 1 whenn → nF).

• In the symplectic caseβ = 4:

P
(4)
2n

′
(x)

P
(4)
2n (x)

= 2nWn(z)|z=x with V(x) = N

n
V − 2

n
ln(x − z) (4.44)

i.e. m = n, r = 2
n

andT = n
N

(→ 1 whenn → nF).

In all three casesT = n
nF

andr = β
2n .

4.2. Asymptotics for the resolvent

In a potentialV , the resolventW(z) = Wm(z) satisfies the equations of motion (resulting from
invariance of an integral like equation 2.1 under a change of variableM → f (M)):

W(z)2 − η

2n
W ′(z) = 2

β
V ′(z)W(z)−Q(z) +O(1/n2) (4.45)

whereη = (1,0,−1) respectively forβ = (1,2,4) andQ(z) is a polynomial3 of degree deg
V − 2, which is not determined by the equations of motions and has to be determined by
analytical considerations, for instance the one-cut assumption.
3 WhenV ′ has poles,Q may have poles too.Q(z) is a rational function, whose poles must be chosen in order to
cancel the poles ofW(z) in equation 4.45.
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Here, we will consider a potentialV of the form

V(z) = 1

T
V (z)− r ln (x − z) (4.46)

and we will be interested in the limit whereT − 1 andr are small of order 1/n.
The method is to find first the solutionW(z) atT = 1 andr = 0. We write it

W(z) = W0(z) +
η

2n
W1(z) +O(1/n2) (4.47)

and then, add the variations

(T − 1)
∂

∂T
W0 + r

∂

∂r
W0 (4.48)

(to order 1/n, we do not need to consider the variations ofW1 with respect toT andr), the
derivatives are taken atT = 1 andr = 0.

4.3. Contribution of W0

The functionW0(z), (as well as its derivatives with respect toT andr) has been extensively
studied in RMT. Note thatW0 is nearly the same forβ = 1, 2 or 4. Let us recall here some of
the main features ofW0 in order to fix the notations.

At n → ∞ (T = 1 andr = 0), 4.45 reduces to a quadratic equation forW0(z). The
one-cut solution is

W0(z) = 1

β
(V ′(z)−M(z)

√
(z − a)(z− b)) (4.49)

whereM(z) is a polynomial of degreed − 1 (d = degV ′), which is completely determined
by the largez limit condition 4.40

M(z) = Pol
z→∞

V ′(z)
z
√
(1 − a/z)(1 − b/z)

. (4.50)

The end-pointsa andb too are determined by (4.40) which implies∮
V ′(z)√

(z − a)(z− b)
dz = 0

∮
zV ′(z)√

(z− a)(z− b)
dz = 2iπβ (4.51)

where the contour encircles the cut [a, b] in the counterclockwise direction.
We also introduce the functionρ(z) = 1

βπ
M(z)

√
(z− a)(b− z), defined forz complex.

It is such that

W0(z) = 1

β
V ′(z)− iπρ(z). (4.52)

Whenz ∈ [a, b], ρ(z) is real and coincides with the average density of eigenvalues of the
random matrix in the largeN limit4. Indeed from (4.38),W(z) = ∫ b

a
1
z−λρ(λ) dλ. Note that

(4.40) implies that the density is normalized:∫ b

a

dz ρ(z) = 1. (4.53)

It is useful to notice thatW0(z) obeys a linear Riemann–Hilbert type equation:

W0(z + i0) +W0(z− i0) = 2

β
V ′(z) when z ∈ [a, b]. (4.54)

4 As an example, consider the Gaussian case:V is quadratic, i.e.V ′ is of degreed = 1, thusM(z) is a constant and
ρ(z) = √

(z− a)(b − z) is the famous Wigner’s semi-circle law.
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Some notations. It will be convenient to parametrizez as

z = a + b

2
+
b − a

2
cosφ(z) = a + b

2
+ 2α cosφ(z) where α = b − a

4
(4.55)

φ(z) is defined for all complexz and is a multi-valued function. We will see that both
determinationsφ(z) and −φ(z) will enter the asymptotic expression of the orthogonal
polynomials whenz ∈ [a, b].

We also defineσ(z) as

σ(z) = (z − a)(z− b). (4.56)

We have √
σ(z) = 2iα sinφ and iφ′(z) = 1√

σ(z)
. (4.57)

4.4. Variations of W0 with respect to T and r

It can be proven from (4.54) and (4.40) (see [13] for instance) that

WT (z) =
def

d

dT
TW0(z) = 1√

σ(z)
= i

dφ(z)

dz
(4.58)

and

Wr(z) =
def
β

d

dr
W0(z) = − 1√

σ(z)

√
σ(z)− √

σ(x)

(z − x)
+

1√
σ(z)

. (4.59)

In particular atz = x, we have

Wr(x) = − σ ′(x)
2σ(x)

+
1√
σ(x)

. (4.60)

4.5. Contribution of W1

ForT = 1 andr = 0, and to orderO(1/n), the equation of motion reduces to

W2(z)− η

2n
W ′(z) +O(1/n2) = 2

β
V ′(z)W(z)−Q(z) (4.61)

and we expandW(z) to first order in 1/n as

W(z) ∼ W0(z) +
η

2n
W1(z) +O(1/n2). (4.62)

To order 1/n, equation (4.61) gives (using the value ofW0(z) from (4.49)):

2

β
W1(z) = Q1(z)−W ′

0(z)

M(z)
√
σ(z)

(4.63)

whereQ1(z) is a polynomial of degreed − 2.
Let us factorizeM(z) (recall thatd = degV ′ andg is the leading coefficient ofV ′):

M(z) = g

d−1∏
k=1

(z − zk) (4.64)

and decomposeW1 into single pole terms.The condition thatW1(z) is regular whenz = zk
determines the polynomialQ1(z), we obtain

W1(z) = σ ′(z)
4σ(z)

+
1

2

d−1∑
k=1

√
σ(z)− √

σ(zk)

(z− zk)
√
σ(z)

− d

2
√
σ(z)

. (4.65)
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With the parameterizationz = a+b
2 + 2α cosφ andzk = a+b

2 + 2α cosφk, we have

W1(z) = d

dz

[
1

4
ln σ(z) +

d−1∑
k=1

ln sin

(
φ(z) + φk

2

)
− d

2
iφ(z)

]
. (4.66)

4.6. Asymptotics of the skew orthogonal polynomials

We have computed all the contributions to the asymptotics of the resolvent

W(z) ∼ 1

T
W0(z) +

T − 1

T
WT (z) +

r

β
Wr(z)

η

2n
W1(z) +O(1/n2) (4.67)

i.e.

2nW(z) ∼ βNβW0(z) + (2n− βNβ)WT (z) +Wr(z) + ηW1(z) +O(1/n) (4.68)

whereW0,WT ,Wr ,W1 are given by (4.52), (4.58), (4.59) (or (4.60)), (4.65) (or (4.66)).
Combining everything together:

• β = 2. FromP ′
n/Pn = nW(x), we get the asymptotic behaviour of the orthogonal

polynomials (already known [2,13,14]):

P (2)n (x)e−N
2 V (x) ∼ C

(2)
n√

2iα sinφ
e−N iπ

∫ x
a ρ(y) dyei(n−N+ 1

2 )φ + c.c. (4.69)

The normalization constantC(2)n = αn+ 1
2 is such thatPn(x) ∼ xn for largex. Equation

(4.69) is basically the contribution ofW0, which is the same for all three casesβ = 1,2,4.
Theβ = 1 andβ = 4 cases contain an extra contribution fromW1.

• β = 1. FromP ′
2n/P2n = 2nW(x) we get.

P
(1)
2n (x)e

−NV (x) ∼ C
(1)
n√

2iα sinφ
e−N iπ

∫ x
a ρ(y) dy ei(2n+1−N− d

2 )φ M+(φ) + c.c. (4.70)

where

M+(φ) = M−(−φ) =
d−1∏
k=1

2i sin

(
φ + φk

2

)
. (4.71)

Note thatM(x) = gαd−1M+(φ)M−(φ), whereg is the leading coefficient ofV ′(x).

C(1)n = α2n+ 1
2

d−1∏
k=1

e−iφk/2 (4.72)

is the normalization constant chosen so thatP2n(x) ∼ x2n for largex.
The odd polynomial is found fromP2n+1/P2n = 〈x + trM + cn〉 and 〈 trM〉 =

2n limz→∞ z2(W(z)− 1) (note that we need (4.59), not (4.60)). The wholex dependence
of P2n+1/P2n comes fromx + limz→∞ z2(Wr(z)− 1) = √

σ(x)− a+b
2 . Therefore, (and

up to an arbitrary linear combination withP2n), we have

P
(1)
2n+1(x)e

−NV (x) ∼ C(1)n

√
2iα sinφ e−N iπ

∫ x
a ρ(y) dy ei(2n+1−N− d

2 )φ M+(φ) + c.c.

(4.73)



7602 B Eynard

• β = 4. FromP ′
2n/P2n = 2nW(x) we get

P
(4)
2n (x)e

−N
2 V (x) ∼ C

(4)
n√

2iα sinφ
e−2N iπ

∫ x
a ρ(y) dy ei(2n+1−2N+ d2 )φ

M−(φ)
iρ(x)

+ c.c. (4.74)

with normalization constant

C(4)n = g

4π
α2n+d+ 1

2

d−1∏
k=1

eiφk/2 (4.75)

and

P
(4)
2n+1(x)e

−N
2 V (x) ∼ C(4)n

√
2iα sinφ e−2N iπ

∫ x
a ρ(y) dy ei(2n+1−2N+ d2 )φ

M−(φ)
iρ(x)

+ c.c.

(4.76)

Note that we have used iρ(x) = g
4π α

d M+(φ)M−(φ) 2i sinφ.

Some remarks

• The derivation presented here is actually valid only whenx /∈ [a, b], giving only one
exponential term, with the determination ofρ(x) and φ(x) (from (4.55)) such that
Pn(x)e−NV (x) decreases whenx → ∞. Whenx ∈ [a, b], a careful analysis shows
that both determinations ofφ(x)must be taken into account. The only effect is to add the
complex conjugate exponential (c.c.) to the asymptotics, so thatPn(x) is indeed real when
x ∈ [a, b]. Outside [a, b], Pne−NV decreases exponentially, and in [a, b], it oscillates
like a cosine function, and it indeed hasn zeroes.

• The derivation was carried out only in the ‘one-cut’ case. It was assumed that the support
of the density of eigenvalues (forN → ∞) is connected and is made of one interval
[a, b].

• The derived asymptotics are not valid whenx is close to the end-pointsa or b. One must
have|(x − a)(x − b)| > O(N−γ ), whereγ is some positive (and rational) exponent
which depends on the potentialV . For generic5 V , (in particular forV quadratic), we
haveγ = 2/3 [20, 21].

• Note that the above expressions all have the correct largex behaviourPn(x) ∼ xn. It can
be seen easily if one remembers thatx ∼ αeiφ when iφ → +∞.

4.7. Check of orthogonality

We have presented a derivation of the asymptotics (4.70)–(4.76), so that there should be no
reason to doubt they fulfil the orthogonality condition. However, it is interesting to see how.
We will just sketch the procedure.

In all cases, we have to compute integrals ofPnPme−NV , with x running from−∞ to +∞.
The contributions outside [a,b] are exponentially small, the integrals can thus be computed
inside [a, b]. Within [a, b], terms which oscillate exponentially fast like eNiπ

∫
ρ , average to

zero to orderO(1/N), so that to leading order, it is sufficient to consider only the cross-terms
in the productPnPm, with opposite signs for the two determinations ofφ.

In theβ = 1 case, the scalar product〈Pn|Pm〉 of (2.7) can be computed by integration
by parts. For that, you need a primitive ofPne−NV , which is achieved to leading order by
dividing (4.70) or (4.73) byρ(x) ∝ M+(φ)M−(φ) sinφ.

5 γ depends onma andmb whereρ(z) ∼ (z− a)ma+1/2 nearz = a andρ(z) ∼ (z − b)mb+1/2 nearz = b. When
ma = mb = 0, we haveγ = 2/3.
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In theβ = 4 case, you need a derivative ofPne−N
2 V , which is achieved to leading order

by multiplying (4.74) or (4.76) byρ(x) ∝ M+(φ)M−(φ) sinφ.
Then you find that in both cases (β = 1 and 4), and up to unimportant constant factors,

you have to leading order (up toO(1/n))

〈P2n|P2m〉 ∝
∫ π

0
dφ

sin 2(n−m)φ

sinφ
= 0 (4.77)

〈P2n+1|P2m+1〉 ∝
∫ π

0
dφ sinφ sin 2(n−m)φ = 0 (4.78)

〈P2n+1|P2m〉 ∝
∫ π

0
dφ cos 2(n−m)φ ∝ δnm (4.79)

which confirms that our asymptotics indeed fulfil the orthogonality properties.
Taking into account properly the constant factors, we can determine thehn’s:

• β = 2:

h(2)n ∼ 2π α2n+1 (4.80)

• β = 1:

h(1)n ∼ 16π

Ngαd+1 α
4n+3 (4.81)

• β = 4:

h(4)n ∼ 2Nπgαd+1 α4n+1. (4.82)

5. Conclusions

Therefore, we have obtained some exact integral expressions and asymptotics for the skew
orthogonal polynomials involved in the orthogonal and symplectic random matrix ensembles.

Our asymptotics were derived in the ‘one-cut’ case only, though it seems likely that the
result could be extended easily to the multicut case, following the method of [15] or [16] and
would involve hyper-elliptical theta functions instead of exponentials.

Another possible extension of the method presented here is to ‘multi-matrix models’, and
a time-dependent matrix, as in [13]. It seems that the same kind of asymptotics could be
obtained.

The asymptotics of the skew orthogonal polynomials are useful to evaluate the Christoffel–
Darboux kernels

K(λ,µ) = 1

N

N−1∑
n=0

1

hn
(P2n(λ)P2n+1(µ)− P2n+1(λ)P2n(µ)) e−NV (λ) e−NV (µ) (5.83)

which give all the correlation functions. For instance withβ = 4, we have [3]

ρ(λ) = − ∂

∂λ
K(λ,µ)

∣∣∣∣
µ=λ

(5.84)

ρc(λ,µ) = − ∂

∂λ
K(λ,µ)

∂

∂µ
K(λ,µ) +K(λ,µ)

∂

∂λ

∂

∂µ
K(λ,µ). (5.85)

In order to use the asymptotics of the orthogonal polynomials in (5.83), one needs a
generalization of the Christoffel–Darboux theorem, which yieldsK(λ,µ) in terms of a few
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Pn only with n close to the Fermi levelnF . With asymptotics of the type (4.69), (4.70),
(4.73), (4.74) or (4.76), the Christoffel–Darboux theorem [17, 18] merely amounts to a formal
resummation of the geometrical series (it was proven in [13] for hermitian multi-matrix models,
and the same proof would work here). For instance in theβ = 4 case, the generalization of
the Christoffel–Darboux theorem reads

N−1∑
n=0

ei(2n+3−2N)(φ(λ)−φ(µ)) ∼ 1

2i sin(φ(λ)− φ(µ))
. (5.86)

This trick yields asymptotics for the kernelsK(λ,µ), and subsequently asymptotics for
all the correlation functions. One can then easily check that in the short distance regime
|λ− µ| ∼ O(1/N), the universal 2-point connected correlation function is well reproduced,
and that in the long distance regime|λ − µ| ∼ O(1), the smoothed 2-point connected
correlation function is correctly reproduced too. The leading behaviour of short- and long-
distance correlation functions was already known from other methods [3], so that our method
does not provide any new result for the correlation functions. However, it seems that our
asymptotics could be used to build a rigorous mathematical proof of the universality, following
the method of [10], because they allow a good control of the approximations.

In addition, the fact that the skew orthogonal polynomials are exactly the average
characteristic polynomials of the random matrices is remarkable. It would be interesting
to understand the generality of this result, and for instance try to generalize it to the other
random matrix ensembles related to Cartan’s classification of symmetric spaces [19].

Appendix A1. The symplectic ensemble β = 4

E
(4)
N is the set of all real-quaternion-self-dual matricesM, of size 2N × 2N .

One can view a 2N × 2N matrixM as a block matrix withN2 blocks of size 2× 2

M̃ij =
(
M2i−1,2j−1 M2i,2j−1
M2i−1,2j M2i,2j

)
.

By definition,M ∈ E
(4)
N means that each̃Mij is a real-quaternion (see appendix A2). The

matrix (M̃)ij (1 � i, j � N) is aN × N matrix with real-quaternion entries, and self duality

means thatM̃ij = M̃ji , which implies thatM is hermitian:M† = M.
Note thatZMZ = −Mt whereZ = (

0 1
−1 0

) ⊗ IdN .
M is diagonalizable (by a symplectic transformation) and all its eigenvalues are

degenerated twice. Let(λ1, . . . , λN) be the eigenvalues. The trace and the determinant
of M are

trM = 2
N∑
j=1

λj detM = (Pf M̃ )2 =

 N∏
j=1

λj




2

. (A1.87)

The measure dM onE(4)N is

dM =
def

N∏
i=1

dM̃(0)
ii

∏
1�i<j�N

dM̃(0)
ij dM̃(1)

ij dM̃(2)
ij dM̃(3)

ij . (A1.88)
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Appendix A2. Quaternions

A real-quaternionq can be represented as a 2× 2 matrix of the following form:

q = q(0)I2 + q(1)e1 + q(2)e2 + q(3)e3 (A2.89)

whereq(0), q(1) , q(2) , q(3) are real numbers and

I2 =
(

1 0
0 1

)
e1 =

(
0 1

−1 0

)
e2 =

(
0 i

i 0

)
e3 =

(
i 0
0 −i

)
. (A2.90)

The conjugate of a quaternionq is

q = q(0)I2 − q(1)e1 − q(2)e2 − q(3)e3. (A2.91)

The set of quaternions is a non-commutative field (note that any non-zero quaternion is
invertible).
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